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Paper Background
 Lack of literature on productionizing machine learning workflows

 Data analytics and warehousing  Hive→

 Ingress  → Scribe (Twitter), Chukwa (Yahoo)

 Egress  Hbase, PNUTS (Yahoo)→
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Introduction
 LinkedIn +200 million users

 Data-driven features  collaborative filtering (→ wisdom of the crowd)

 Hadoop provides a rich ecosystem  horizontal scalability, fault tolerance, and →

multitenancy

 How to make life easier for machine learning researchers and data scientists
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Let’s talk Apache
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The Data Ecosystem
 Online – Offline – Online. HDFS acts as the sink for all the data

 2 types of incoming data  event data and core database snapshots→

 From ETL Hadoop instance to dev and prod

 Researchers and DS define workflows to play with the data

 Data delivery  Key-value, Data Streams, and Analytics/OLAP→

 Avro as the standard serialization format
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Ingress
 Challenge to make data available without manual intervention  large datasets, →

diverse data, evolving functionalities, and data quality

 Kafka allows data publishers interact with consumers through topics

 Distribution of logical consumers for large data feeds  Zookeper→
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Ingress: Data Evolution
 Unstructured vs structured data

 LinkedIn uses a schema registry to map topics to schemas
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Ingress: Hadoop Load
 Data pulled from Kafka brokers into Hadoop every 10 minutes

 Replication  from ETL cluster to prod and dev cluster→

 LinkedIn maintains topics historic data

 2 Kafka clusters for event data  primary (online services) and secondary (offline →

prototyping and data loading into Hadoop). Use of mirroring process for sync

 100 TB = 300 topics

 15 billion messages writes, 55 billion messages reads
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Ingress: Monitoring
 Audit trail  assessment of correctness and latency→

● Audit data: topic, machine name, time window, number of events

● Continuous audit  Programmed to alert if completeness is not reached in a →
fixed time
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Workflows
 Workflow  Chain of → MapReduce jobs. DAG

 Primary interfaces  Hive, Pig, and native MapReduce→

 Common functionalities between workflows  creation of wrappers to read and →

write time-partitioned data
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Workflows: Azkaban
 Configuration and dependencies for jobs are maintained as files of simple key-

value pairs

 Researchers can edit, deploy, monitor, restart, setup notifications, and even 

capture logs and statistics

 Example: ML application   Each feature becomes an individual Azkaban job →

followed by a join of the output of these jobs into a feature vector.

 ADEV  test period  production review  A→ → → PROD

The “Big Data” Ecosystem at LinkedIn PAGE  11



Egress: Key-value access (70%)
 Voldemort  distributed key-value store →

with a simple get(key) and put(key, 

value) interface.

 Tuples are grouped into logical stores 

(tables). Keys are replicated. Nodes are 

split into logical partitions  A key is →

mapped to multiple partitions (hashing).
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Egress: Stream-oriented access (20%)
 Useful for applications that need a change log of the underlying data.

 Hadoop OutputFormat
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Egress: OLAP access (10%)
 Avatara separates cube generation (high throughput) and query serving (low 

latency)

 Large cubes are split into ‘small cubes’ using shard key 
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Applications: Key-value
 People You May Know  Link prediction problem. Key = member ID, Value = list →

of member ID, score

 Collaborative Filtering  Association rule mining, member-to-member, member-→

to-company. Key = <entity ID,  entity type>, Value = top related entity pairs.

 Skill Endorsements  Def inion of a Taxonomy  (e.g., “Rails” is the same as “Ruby →

on Rails”). Key = member ID, Value = <member ID,  skill ID, score>.

 Related Searches  Member search activity. → Key = <term ID, local>, Value = 

search term
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Applications: Key-value
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Applications: Streams
 News Feed Updates  A connection updates →

her profile, company that most of a member’s 

former coworkers now work for 

 Email  Online or offline. Examples: password →

recovery, joining a group, weekly digest.

 Relationship Strength  LinkedIn’s social →

graph edge scoring. Examples: best path in the 

graph, search typeahead, search suggestions
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Applications: OLAP
 Who’s Viewed My Profile?

 Who’s Viewed This Job?
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Key Take away

A rich developer ecosystem empowers machine learning 

researchers and data scientists to productionize their work  →

Their focus is to build data products
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
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
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Discussion
 How about empowering prototyping and feature testing?

 Trade-off between in-house infrastructure and on the cloud infrastructure

 Is there a better replication schema than ETL+Dev+Prod?
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